

Curso de Termodinâmica-GFI 04116

1º semestre de 2008 1ª série de Exercícios

Prof. Jürgen Stilck

- 1. Um gás sofre um processo quase-estático e se expande a partir de um estado inicial caracterizado por V_0 e p_0 , até um estado final no qual seu volume é V_1 . Nessa expansão a pressão varia com o volume de acordo com a expressão $p = p_0 V_0^{5/3} V^{-5/3}$.
 - a) Determine a pressão p_1 correspondente ao estado final do processo.
 - b) Calcule o trabalho realizado pelo gás na expansão.
 - c) Supondo que a expansão seja adiabática, qual é a variação da sua energia interna?
 - d) A energia interna do gás aumentou ou diminuiu na expansão? Justifique.
- 2. O mesmo gás do exercício anterior, após realizar o processo $0 \to 1$ sofre uma compressão isocórica até um estado final 3, cuja pressão é igual a p_0 , a mesma do estado inicial. Nesse processo o gás recebe uma quantidade de calor Q. Suponha, agora, que o gás passe por uma expansão isobárica $0 \to 2$. Qual é a quantidade de calor recebida nesse processo?
- 3. Para um determinado gás, a equação da adiabática que passa por um ponto de referência (V_0,p_0) é $pV^{5/3}=p_0V_0^{5/3}$. Além disso, o calor

fornecido ao gás num processo isocórico quase-estático entre os estados (V,p_1) e (V,p)é

$$Q = \frac{3}{2}(p - p_1)V.$$

Determine a energia interna do gás como função de V e p.

- 4. Considere a expansão livre e adiabática de um gás.
 - a) Qual é o trabalho realizado pelo gás no processo?
 - b) Suponha que a energia interna do gás seja dada por

$$U = \frac{3}{2}pV - A\frac{N^2}{V},$$

onde N é o número de moles do gás, p é a sua pressão, V é o volume do recipiente e A é uma constante. Se inicialmente o gás ocupa um volume V_A e se encontra à pressão p_A , qual será a sua pressão após uma expansão livre até o volume $V_B > V_A$?

5. A energia interna de N moles de um certo fluido simples num ponto (V, p) do diagrama de Clapeyron é dada por:

$$U = B \frac{pV^2}{N},$$

onde B é uma constante.

- a) Qual deve ser a unidade, no SI, da constante B?
- b) O fluido passa por um processo quase estático adiabático do estado (V_1, p_1) para o estado (V_2, p_2) . Determine o trabalho realizado por ele neste processo.
- c) Obtenha o trabalho realizado pelo fluido num processo quase estático isocórico, do estado inicial (V_1, p_1) para o estado final (V_1, p_2) .
- d) Numa expansão livre deste fluido, o volume passa de V_1 para $V_2 > V_1$. Sabendo-se que a pressão inicial do fluido era p_1 , determine a pressão final p_2 .
- e) Determine as expressões das curvas adiabáticas para este fluido.